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Visualizing pathologies in three dimensions can provide unique insights into the biology of human
diseases. A rapid and easy-to-implement dibenzyl ether—based technique was used to clear thick
sections of surgically resected human pancreatic parenchyma. Protocols were applicable to both fresh
and formalin-fixed, paraffin-embedded tissue. The penetration of antibodies into dense pancreatic
parenchyma was optimized using both gradually increasing antibody concentrations and centrifugal
flow. Immunolabeling with antibodies against cytokeratin 19 was visualized using both light sheet and
confocal laser scanning microscopy. The technique was applied successfully to 26 sections of pancreas,
providing three-dimensional (3D) images of normal pancreatic tissue, pancreatic intraepithelial
neoplasia, intraductal papillary mucinous neoplasms, and infiltrating pancreatic ductal adenocarci-
nomas. 3D visualization highlighted processes that are hard to conceptualize in two dimensions, such
as invasive carcinoma growing into what appeared to be pre-existing pancreatic ducts and within
venules, and the tracking of long cords of neoplastic cells parallel to blood vessels. Expanding this
technique to formalin-fixed, paraffin-embedded tissue opens pathology archives to 3D visualization of
unique biosamples and rare diseases. The application of immunolabeling and clearing to human
pancreatic parenchyma provides detailed visualization of normal pancreatic anatomy, and can be used
to characterize the 3D architecture of diseases including pancreatic intraepithelial neoplasia,
intraductal papillary mucinous neoplasm, and pancreatic ductal adenocarcinomas. (Am J Pathol 2018,
188: 1530—1535; https://doi.org/10.1016/].ajpath.2018.04.002)
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Three Dimensional Pancreatic Pathology

Since the days of Virchow, pathologists have been studying
diseases in two dimensions.! For centuries, standard
hematoxylin and eosin (H&E)-stained slides have framed
our field of vision and therefore have narrowed the
conceptual framework through which diseases are viewed.
Although radiologists and experimental pathologists have
broken through this framework with technologies such as
three-dimensional (3D) computed tomography and organoid
models, most morphologic studies of in sifu human
pathology still are viewed and conceptualized in two
dimensions. >

Visualizing pathologies in three dimensions provides
insight into the biology of human diseases. Lesions can be
measured accurately, the spatial relationships of various
tissue and cell components can be defined, and morphologic
changes can be put in the appropriate multidimensional
context.”* The addition of immunolabeling for protein and
in situ hybridization for RNA would allow one to visualize
protein and gene expression in 3D space, creating a true
multidimensional landscape.

We present a simple clearing and labeling method to
visualize intact thick sections of normal and diseased human
pancreatic parenchyma in three dimensions.””’ Organic
solvents were selected to clear stroma-rich human tissues.*”
Proteins are preserved, allowing for immunofluorescent la-
beling of protein expression with an optimized protocol for
penetration of antibodies in dense pancreatic tissue. In this
study, cytokeratin 19 (CK19) was labeled to visualize the
pancreatic ductal system, and the autofluorescent features of
collagen and elastin were exploited to visualize blood
vessels.

This methodology has a number of potential applications.
The volume of small lesions, such as pancreatic intraepithelial
neoplasia (PanIN) lesions, may be determined, the 3D
relationships of cells (neoplastic, inflammatory, and so forth)
to important structures (vessels, nerves, ducts, and so forth)
may be defined, and changes in protein expression may be
defined as cells interact, such as when neoplastic cells invade
into tissues. When DNA and RNA studies are added in the
future, the methodology may be used to define the drivers of
3D morphology.'*""

Materials and Methods

This study was approved by our Institutional Review
Board. Briefly, intact slabs (up to 2.0 x 2.0 x 0.5 cm) of
excess normal or diseased surgically resected human
pancreatic parenchyma were harvested. These included 17
slabs of grossly normal pancreatic parenchyma, 7 slabs of
infiltrating pancreatic ductal adenocarcinoma with adjacent
pancreatic parenchyma, and 2 slabs with a grossly dilated
pancreatic duct, grossly suspicious for intraductal papillary
mucinous neoplasm. Four of the 17 slabs of normal
pancreatic parenchyma were first formalin-fixed and
paraffin-embedded.
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Fresh Samples

Fresh tissues were fixed as quickly as possible after surgical
resection in 80% methanol/20% dimethyl sulfoxide (DMSO)
to dehydrate the tissues and precipitate proteins to stop
autolysis of the tissue by pancreatic enzymes. Fixation was
performed overnight at room temperature. The following day,
the tissues were rehydrated and fixed in neutral-buffered 10%
formalin or 4% paraformaldehyde for 24 hours at room
temperature. Next, the tissues were dehydrated with 70%
methanol, 95% methanol, and 3 x 100% methanol, followed
by chilling the tissue for an hour at 4°C in 100% methanol.
Tissues then were incubated overnight in 66% dichloro-
methane/33% methanol at room temperature. Samples then
were washed twice in 100% methanol and then 5% hydrogen
peroxide was added to the 100% methanol for overnight
incubation to oxidize endogenous pigments and auto-
fluorescent proteins, resulting in increased tissue clearing and
decreased tissue autofluorescence. Tissues were rehydrated in
1 x phosphate-buffered saline (PBS) and then washed twice
for an hour each in PBS/0.2% Triton X-100 (Millipore Sigma,
St. Louis, MO). Next, the tissues were incubated for 4 days in
a permeabilization solution of PBS/20% DMSO/0.2% Triton
X-100/0.3 mol/L glycine at 37°C. Glycine was added to
prevent background labeling.

Formalin-Fixed, Paraffin-Embedded Samples

After harvesting, four of the tissues were formalin-fixed and
paraffin-embedded. The tissues were released from the
block by dissolving the paraffin in xylene at 37°C. The
tissues then were washed 3 times in 100% methanol and
chilled for an hour at 4°C, followed by incubation overnight
in 66% dichloromethane/33% methanol at room tempera-
ture. Samples were washed twice in 100% methanol. Five
percent hydrogen peroxide was then added to the 100%
methanol for overnight incubation. Tissues were rehydrated
in PBS and washed twice for an hour each in PBS/0.2%
Triton X-100, and then incubated for 2 days in PBS/20%
DMSO0/0.2% Triton X-100/0.3 mol/L glycine at 37°C.
Glycine was added to prevent background labeling.”

Immunolabeling

Antigen blocking was performed by incubating the tissues in
PBS/0.2% Triton X-100/10% DMSO/6% donkey serum for 2
days at 37°C. Samples then were washed twice in PBS/0.2%
Tween-20 with 10 pg/mL heparin for 1 hour each at 37°C.
Heparin was added to prevent background labeling.” The
extracellular matrix is a significant physical barrier for the
penetration of antibodies.'”'* Two approaches were used to
increase the penetration of the primary antibody, rabbit anti-
human CKI19. First, the antibody concentration was
increased gradually over 4 days from a starting dilution of
1/800 to a final dilution of 1/200. Specifically, primary anti-
body (rabbit anti-human CK19; Abcam, Cambridge, UK)
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Figure 1  Gross image of cleared human pancreatic parenchyma. In this
5-mm—thick cleared section of pancreatic tissue, the refractive index
matching reduces light scattering and produces cleared tissue that enables
fluorescent microscopy of deeper structures. Original magnification, x2.5.

incubation was performed in PBS/5% DMSO/3% donkey
serum/0.2% Tween-20 with 10 pg/mL heparin at a dilution of
1/800 on the first day. For the next 3 days, the antibody con-
centration was increased every day by 1/800 (1/800, 2/800,
3/800, and so forth) until a final dilution of 1/200. As a second
approach, centrifugal flow (600 x g) was also used to promote
antibody penetration.'* During these 4 days of antibody incu-
bation, the tissues were centrifuged consecutively for 12 hours
at 600 x g and shaken for 12 hours at 37°C. After the primary
antibody was applied to the tissues, they were washed 5 times
with PBS/0.2% Tween-20 with 10 pg/mL heparin for 1 hour
each at room temperature. A pepsin-digested secondary anti-
body fragment with a smaller molecular weight than an intact
IgG antibody was used to increase tissue penetration of the
secondary antibody. The secondary antibody fragment (Alexa
Fluor 488 AffiniPure F(ab’), fragment, donkey anti-rabbit IgG;
Jackson ImmunoResearch, West Grove, PA) was incubated for
4 days and protected from light. During this time, the tissues
were alternatively centrifuged for 12 hours at 600 x g and
shaken for 12 hours at 37°C. The tissues were then washed
5 times with PBS/0.2% Tween-20 with 10 pg/mL heparin for
1 hour each at room temperature and protected from light.

Tissue Clearing

The tissues were dehydrated with 70% methanol, 95%
methanol, and 3 x 100% methanol, followed by a 3-hour
incubation in 66% dichloromethane/33% methanol at room
temperature while shaking. Right before clearing in diben-
zyl ether (DBE) for at least 48 hours, the tissues were
incubated in 100% dichloromethane for 15 minutes.

Imaging

Immunolabeled tissues were visualized in three dimensions
using either the Ultramicroscope II (Light Sheet Micro-
scope; LaVision BioTec, Bielefeld, Germany) or the
LSMB800 (confocal laser scanning microscope; Carl Zeiss,
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Jena, Germany). The Ultramicroscope II is equipped with a
Neo sCMOS camera (Andor Technology, Belfast, UK) and
a 4x objective lens that was immersed in DBE in the im-
aging chamber. Alexa 488 signals of ductal cells were
visualized with a bandpass filter set with an excitation range
of 480/40 nm and an emission range of 525/50 nm.
Although autofluorescence of the tissues was reduced as
described in Fresh Samples and Formalin-Fixed, Paraffin-
Embedded Samples, the elastic lamina and collagen of
blood vessels still had detectable autofluorescence. This
autofluorescence, combined with the unique morphology of
elastic lamina, was used to identify vessels without the use
of additional labeling. Autofluorescence was observed in an
additional filter set of the LaVision Ultramicroscope II
(excitation, 405/40 nm; emission, 460/50 nm). For the
LSMS800 microscope, the tissue was submerged in DBE in a
petri dish to match the refractive index and to obtain a flat
surface at the interface between materials of different
refractive indices. We used both the 5x and 10x objectives.
The 488-nm argon laser was used to excite the Alexa 488
fluorochrome, and the range of visualized emitted light was
set at 510 to 615 nm. Autofluorescence was observed best in
the LSM800 microscope when the 405-nm laser was used
and the range of visualized emitted light was set between
410 and 470 nm. However, the autofluorescence signal also
was observed while visualizing the Alexa 488 fluorochrome
with both the Ultramicroscope II and the LSMS800. 3D
reconstructions were made with Imaris Software version 8.4
(Bitplane, Zurich, Switzerland).

Validation

Four of the cases were embedded in paraffin after labeling,
clearing, and visualization. DBE was removed by washing it
away with methanol (5 times for >1 hour), followed by
rehydration with PBS. Tissues then were formalin-fixed and
paraffin-embedded, and sectioned for routine H&E staining.
The pathologies observed in the cleared tissues were
compared with those in the H&E-stained slides.

Results

All 26 thick sections of human pancreatic parenchyma were
cleared successfully (Figure 1). Normal parenchyma, fatty
parenchyma, and even densely fibrotic parenchyma were
cleared. All sections were labeled with an antibody targeting
CK19. CK19 was selected as the first marker to examine in
three dimensions because it allows visualization of the normal
epithelial components of the pancreas, pancreatic cancer
precursor lesions, and invasive pancreatic cancer, providing
broad insights into normal and neoplastic processes in the
human pancreas. Although the penetration of antibody into
the dense fibrotic tissue of human pancreatic cancer was
increased by applying centrifugal flow, the penetration
obtained with fibrotic cancerous tissues was not as great as
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that observed with normal pancreatic parenchyma. CKI19
labeling could be visualized from 0.7 to 1.5 mm into the
normal tissue sections and 0.3 to 0.6 mm into the pancreatic
ductal adenocarcinoma sections. Because depth-based limi-
tations were not encountered when visualizing auto-
fluorescent signals in the tissue, it can be concluded that the
depth of visualization was limited by antibody penetration,
not by efficacy of clearing or visualization capabilities of the
light sheet microscope.

Normal Parenchyma

The 3D branching of ducts was visualized easily, and small
periductal glands extending off of larger ducts into the stroma
could be appreciated (Figure 2A and Supplemental Videos
S1, S2, and S3). As has been described in rat pancreatic
parenchyma, some of the ductules in the normal pancreas
formed loops instead of linear branches (Figure 2A and
Supplemental Video S2). Localized dilation of the ductules in
a lobule was seen in one case, probably secondary to down-
stream obstruction (Supplemental Video S3).

Precursor Lesions

Immunolabeling highlighted microscopic PanIN and intra-
ductal papillary mucinous neoplasm lesions. The neoplastic
papillary projections of the PanIN and intraductal papillary
mucinous neoplasm lesions into the lumina of ducts was
readily appreciated (Figure 2B and Supplemental Video S4).
A PanIN in one case measured 2.8 mm X 0.5 mm X 0.5 mm.

The American Journal of Pathology m ajp.amjpathol.org

Figure 2  Three-dimensional imaging of normal
and neoplastic human pancreatic parenchyma.
Sections of grossly normal and neoplastic human
pancreas were immunolabeled with antibodies for
cytokeratin 19 and then cleared. A: In the normal
pancreas, the branching morphology at the edge
of a lobule can be seen, including one of the ducts
with looping (arrow). B: PanIN precursor lesions
are identified in sections of grossly normal human
pancreas—these lesions have intraluminal papil-
lary projections of columnar epithelial cells.
C: Imaging of grossly identified pancreatic ductal
adenocarcinoma shows multiple patterns of inva-
sion, including growth as invasive long and thin
ductal structures. D: Analysis of pancreatic ductal
adenocarcinoma shows a unique pattern of peri-
vascular spread of malignant cells. The blood
vessel passing from the upper left to the lower
right is identifiable by its autofluorescence. In this
tumor, invasive carcinoma grows in the peri-
vascular space, parallel to the vessel. Scale bars:
200 pm (A, C, and D); 150 um (B).

Invasive Carcinoma

Invasive ductal adenocarcinomas were also well visualized
(Figure 2C). The appearance of the neoplastic cells varied
greatly, from sheets of individual cells embedded in the stroma
(Supplemental Video S5), to large hollow globular clusters
of cells with numerous blunt projections, to haphazardly
arranged discrete long thin tubes (Figure 2C and Supplemental
Video S6). Visualization in 3D allowed for the identification of
cancerization of a duct (Supplemental Video S7), with bridging
of neoplastic cells across the duct lumen. A remarkable finding
was of invasive carcinoma growing in the connective tissue
parallel to blood vessels (Figure 2D and Supplemental Video
S8), as well as invasive carcinoma growing within blood
vessels (Supplemental Videos S9 and S10). The blood vessels
could be identified based on the autofluorescence and distinct
morphology of the arterial elastic lamina. Specific CK19
labeling and nonspecific autofluorescence of the arterial elastic
lamina could be distinguished reliably by careful visualization
of the tissue and use of different excitation wavelengths and
filters. The arterial elastic lamina produced a distinct narrow
bright wavy line that was unique in fluorescent intensity,
pattern, and thickness, distinguishing it from specific CK19
labeling of neoplastic epithelial cells. Moreover, the auto-
fluorescence of the arterial elastic lamina remained in wave-
lengths and filters outside of the 488-nm Alexa Fluor filter that
highlighted specific CK19 labeling.

Validation

With the exception of slight retraction of some epithelial
cells into the lumina of ducts, tissue morphology was
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remarkably well preserved in the H&E sections taken after
the tissue clearing. These H&E sections validated the
interpretation of the 3D findings in all four cases
(Supplemental Figure S1).

Discussion

The 3D visualization of cleared human solid organs provides
an extraordinary opportunity to understand the true
complexity of human diseases.”" ' The application of
labeling and clearing to human pancreatic parenchyma
provides detailed visualization of normal pancreatic anatomy,
and can be used to characterize the 3D architecture of disease
processes ranging from PanIN to invasive carcinoma.
Importantly, with the addition of multicolor immunolabeling,
the 3D relationships of normal ducts, precursor lesions,
invasive carcinoma, immune cells, islets of Langerhans,
vessels, and nerves should be visualizable, %'

Clearing methodologies have been described for 100
years.” The more recent addition of immunolabeling using
fluorescent antibodies has opened the door to 3D micro-
scopy. These techniques were first applied to small pieces of
tissue from experimental models, but technological
improvements in large-scale microscopy have opened up
this technology to the study of a broad array of human
diseases.” The basic principle underlying clearing is that
light scattering, which occurs when photons transition
through tissues with different refractive indices, can be
reduced by matching refractive indices within tissue.*'®
Lipid-containing membranes have a high refractive index,
whereas water-based cytosol and interstitial fluid have a low
refractive index. Dehydration and replacement of the
cytosol and the interstitial fluid with a material with a high
refractive index (such as DBE), followed by submersion of
tissue in DBE during imaging, reduces light scattering, the
main cause of tissue opaqueness. In contrast, other clearing
techniques [eg, Clear Lipid-exchanged Acrylamide-hybrid-
ized Rigid Imaging/Immunostaining/in situ-hybridization-
compatible Tissue hYdrogel (CLARITY)] exploit the
removal of membranes to match the refractive indices."’
Unlike 3D reconstruction of histology from serially
sectioned tissues, clearing avoids artifacts introduced when
tissue is physically sectioned.

Poor antibody penetration can limit the application of
clearing to dense tissues.'* This problem was addressed by
gradually increasing the concentration of antibody and with
centrifugal flow.'* A novel feature of our protocol is the
combination of these strategies to increase antibody
penetration with DBE-based tissue clearing to effectively
visualize fibrotic human pancreatic tissue in three
dimensions. In so doing, we were able to visualize processes
such as cancerization of the ducts and cancer growing
within a long segment of a vein. In addition, although it is
known that the two-dimensional histologic finding of a
gland next to a muscular vessel is suggestive of invasive
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cancer, here we show using 3D visualization that such
proximity is not a random event.'”'® Cords of neoplastic
cells often run parallel to muscular blood vessels. Thus, this
novel finding, observed in three dimensions, explains a
long-known diagnostic aid in surgical pathology. For years,
the presence of a gland next to a muscularized blood vessel
in the pancreas has been recognized as a two-dimensional
histologic feature of malignancy in the pancreas.'® Until
our study, it was not clear whether this co-localization was
simply owing to the haphazard growth of the neoplastic
glands of pancreatic cancer or a more directed process. Our
results show preferential invasion of malignant glands in the
interstitium parallel to blood vessels. The mechanism for
this preferential invasion remains to be elucidated—
possibilities range from cancer growing within longitudinal
perivascular interstitial tracks as well as chemical
attractants.'”*’

We anticipate that this approach will provide new
understandings of a wide range of processes, from the 3D
anatomy of immune responses to neoplastic cells, to the
events that take place at the leading edges of cancers as the
neoplastic cells interact with normal parenchyma. In addition,
this technique can also be applied to animal models of human
disease (such as genetically engineered mouse models or
xenograft models) to interrogate 3D anatomy at specific time
points in disease progression.”' > Importantly, just as the
two-dimensional microscopic visualization of human
diseases helped generate new hypotheses hundreds of years
ago, so too is our hope that the 3D visualization of diseases of
the pancreas will generate new hypotheses and new biological
insights.
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